Nontrivial Solutions for 4-Superlinear Schrödinger–Kirchhoff Equations with Indefinite Potentials

نویسندگان

چکیده

This paper is devoted to the 4-superlinear Schrödinger–Kirchhoff equation − a + b ∫ ℝ 3 open="|" close="|"> ∇ u 2 d x Δ V = f , in where id="M2"> > 0 , id="M3"> ≥ . The potential id="M4"> here indefinite so that Schrödinger operator id="M5"> possesses a finite-dimensional negative space. By using Morse theory, we obtain nontrivial solutions for this problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four nontrivial solutions for subcritical exponential equations

We show that a semilinear Dirichlet problem in bounded domains of R in presence of subcritical exponential nonlinearities has four nontrivial solutions near resonance. 2000AMS subject classification: 35J65, 35J20, 49J40

متن کامل

Multiple Solutions of Superlinear Equations 99 2

— We give some multiplicity results on existence of nontrivial solutions for superlinear elliptic equations with a saddle structure near 0. We make use of a combination of bifurcation theory and minimax methods.

متن کامل

Multiple Nontrivial Solutions of Elliptic Semilinear Equations

We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.

متن کامل

Nontrivial Solutions of Quasilinear Equations in Bv

The existence of a nontrivial critical point is proved for a functional containing an area-type term. Techniques of nonsmooth critical point theory are applied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of function spaces

سال: 2021

ISSN: ['2314-8896', '2314-8888']

DOI: https://doi.org/10.1155/2021/5551561