Nontrivial Solutions for 4-Superlinear Schrödinger–Kirchhoff Equations with Indefinite Potentials
نویسندگان
چکیده
This paper is devoted to the 4-superlinear Schrödinger–Kirchhoff equation − a + b ∫ ℝ 3 open="|" close="|"> ∇ u 2 d x Δ V = f , in where id="M2"> > 0 , id="M3"> ≥ . The potential id="M4"> here indefinite so that Schrödinger operator id="M5"> possesses a finite-dimensional negative space. By using Morse theory, we obtain nontrivial solutions for this problem.
منابع مشابه
Four nontrivial solutions for subcritical exponential equations
We show that a semilinear Dirichlet problem in bounded domains of R in presence of subcritical exponential nonlinearities has four nontrivial solutions near resonance. 2000AMS subject classification: 35J65, 35J20, 49J40
متن کاملMultiple Solutions of Superlinear Equations 99 2
— We give some multiplicity results on existence of nontrivial solutions for superlinear elliptic equations with a saddle structure near 0. We make use of a combination of bifurcation theory and minimax methods.
متن کاملMultiple Nontrivial Solutions of Elliptic Semilinear Equations
We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.
متن کاملNontrivial Solutions of Quasilinear Equations in Bv
The existence of a nontrivial critical point is proved for a functional containing an area-type term. Techniques of nonsmooth critical point theory are applied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of function spaces
سال: 2021
ISSN: ['2314-8896', '2314-8888']
DOI: https://doi.org/10.1155/2021/5551561